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DYNAMIC HYSTERESIS DURING THE REORIENTATION OF NEMATIC LIQUID CRYSTALS 
IN PULSED FIELDS* 

YU.V. VASIL'EV 

It is shown that use of the Lavrent'ev-Ishlinskii method in the study of 
real optical cells based on nematic liquid crystals, enables the 
experimentally observed deviations in the nature of light transmission 
by the optical cells at the leading and trailing front of a strong magnetic 

field acting on the liquid crystal to be explained. The field has the 
form of a square wave pulse of considerable duration. 

1. At a certain critical Vahe value (u,# 0) of the homogeneous, static magnetic field 
strength H, loss of stability of the homogeneous orientation of the director vector field 

s (ail-Q of a nematic liquid crystal (NLC) is possible in an optical cell in which the 
distance L between its two plane parallel glass sides is fixed. Such an idealized theoretical 
scheme of a static experiment was first suggested in /l/, where the framework of the continual 
theory of elasticity of NLC was used to achieve the maximum simplification of the Frederiks 
transition, and attention was drawn to the analogy with the classical problem of mechanics, 
i.e. the bulging of a thin Eulerian rod. 

We know /3/ that the application to the cell of a pulsed control signal of rectangular 
shape (in the form of an electric or magnetic field) of sufficient duration and magnitude, 
leads to considerable difference in the nature of light transmission by the cell at the 
switching on and switching off stages (dynamic hysteresis). This phenomenon has, so far, 
received no satisfactory explanation. 

The prupose of this paper is to show that the phenomenon in question can be explained by 
analysing the dynamic forms of loss of stability in elastic systems /4/. 

2. We choose a Cartesian coordinate system O~!P so that the boundary separating the 
mesophase from the surfacesoftbe sides of the optical cell in contact with it, lies in the 
z=o and L= L planes with respect to which the vectors Hand n are coplanar everywhere. 

In the Zocher scheme /l/ the fixed boundary conditions 

" (J. !i. Ur = " (z. ,,. L) (1. (1. 0) (2.1) 

determine the initial (homogeneous) volume orientation of the director n (r. Ji, z) = Il. !I. (Il. I E (II. 
L). In the static magnetic field H = (0.H.n) it remains undistorted as long as 

Il < II,: H. = (7 LI (Kl y,O,’ 2. 

Here A', is Frank's constant of torsional elasticity and x,, is the anisotropy of the 
magnetic susceptibility of unit volume of the mesophase. 

When H> If,, NLC can undergo deformations of the pure-torsion type of the director a(~.!,. 
n) = [COI q (:).sin q (21% 0). In the middle layer of the mesophase (z= L’f) the maximum deviation of 
the orientation of the director from its initial position is physically justified. Therefore, 
taking into account (2.1) we have 

P (2) = z ~~~,,_~sin~(2m--l)rr~', azrn=O. 
m=, 

(2.2) 

The amplitudes Q~,,,_~ have the same sign, and their magnitude depends on the strength of 

the applied magnetic field /l/. 
The invention of the modern optical (conoscopic) method of recording deformations made 

the determination of experimental values of the elastic constant ii, and torsional viscosity 
y1 /5/ a relatively simple matter. The passage through the optical cell of a divergent beam 
of monochromatic, linearly polarized light in the form of a cone with OL axis, may lead /5, 
6/ to formation of an optical interference pattern on a screen behind the cell, due to 
birefringence in the optically uniaxial NLC characterized by two values of the refractive 
index nr o >I and their difference An-0.2. 
in the phase delay A@ 

The picture obtained is related to the change 
in different directions of the wave vectors L of this light cone 

within the cell /5/ 
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AUJ = cmst. ,(-$-)(kaz~ kyz) - {(kj2- ki) <ccc 2~ (I)) _t 2k,ky (sin 2~ (2))) 1 (2.3) 

where the square brackets denote averaging over ZE IO. L.1. 
Since Arli(ff, - fig)4 1, we find that there are no deformations (e== 0) and we have four 

families of more or less identical hyperbolas corresponding to the lines of equal phase on the 
screen. The apperance of small deformations described by expression (2.2) leads, basically, 
to rotation of this pattern about the OZ axis by an angle /6/ 

When a physical experiment is carried out , small deviations from the ideal Zocher scheme 
are inevitable. For example, the appearance of a small component h of the magnetic field 
If 02. II, (1~ leads to blurring of the Frederiks transition, distortions in NLC appear at any 
non-zero value of H<H, (this resembles the effect of a transverse load on the behaviour of 
a thin Eulerian rod which bulges out even before the critical value of the longitudinal load 
is reached). This error is conveniently characterized by the magnitude of the angle y= arcsin 
(h : IH I). In the optical experiments we can satisfy the condition v&i. if a smooth rotation 
of the cell in its plane in any direction is constructively possible /7/. 

In a real optical cell perturbations in the orientation of the director vector field can 
be expected even when there is no magnetic field present. Some of these perturbations are 
local in character, arbitrarily small in magnitude (e.g. governed by natural thermal fluctua- 
tions), and can be neglected in the initial stages of the investigation. However, an unavoid- 
able global perturbation exists in the form of some small initial twist of the director (which 
resembles a small initial bending of the Eulerian rod) , caused by mechanical error in cell 
construction. The deviation from mutual parallelism of two sides of the cell by an unknown 
small angle 1 makes it necessary to replace the ideal boundary conditions (2.1) by 

As a result /6/ the director undergoes a small twist within the volume of the NLC 

This perturbation may lead to an appreciable difference between the dynamic and quasi- 
static reorientation of the NLC, resulting in the appearance of dynamic hysteresis. 

3. Let the pulsed magnetic field H whose magnitude exceeds that of H,(IH I= @f,) several- 
fcld, act on the NLC for such a long time, that all previous transients have long since ceased 
and the director in the middle layer of the cell (z= L.'Y) deviates by a considerable angle 
q<s'. In this case the assessment of the deformation relaxation processes (after the 
instantaneous switching off of the field HJ need not account for small shifts in the orienta- 
tions caused by errors in the form of angles r+ 1 and q< 1 in the experimental set-up 
(in exact experiments the values of these angles are assumed to range from several degrees to 
fractions of these degrees 101). 

In the dynaric theory cf NLC due to Oseen /i/ the motion of the director, after the 
magnetic field H has been f;;lly switched off at the instant I= 0, is obtained from the 
equation of mechanical mcments which, when projected on to the 0; axis, has the form 

(3.1) 

Here p is the density of the NLC and d,l is the square of the director vector field 
radius of inertia per unit volume of the mesophase. No reliable experimental data concerning 
the magnitude of d, exist. In /9/ it is regarded as a molecular characteristic. As it is 

small, it is suggested that the c' ,irst term of this equation should be neglected when computing 
the deformation relaxation time. 

Experiments show /5/ that since the viscosity y1 is very large, the equilibrium states 
of the director in the optical cell are attained after switching off the magnetic field not 
in an oscillatory, but in a limiting manner. The interference pattern observed (in the form 
of hyperbolas) changes the angle of rotation 6(t) continuously from some initial value 6 (O)i@ 
to the final value 6(oc)= 0. Therefore /lo, ll/ it is correct to assume that d,=O. In this 

case the part of the solution of the initial momentum equation decaying most slowly with time, 
is practically identical with the exact solution of the truncated equation. As a result, when 

the initial conditions are (2.2)) the following approximate relations hold for the spectral 



259 

components {lr,(f): (EEX) of the distortions: 

When a strong magnetic field H is switched on, the situation may become completely 
different. 

We know r/4/ that when elastic systems am pulse-loaded, it is essential, that small, but 
very important physical factors which determine, to an appreciable degree, the character of 
development of the processes when the systems depart from the state of equilibrium, be taken 
into account. For this reason, when the motion of the director following the Instantaneous 

(1 = Q switching on of a strong magnetic field H (lb f- pH,,p>ij is considered, we must take 
into account the global errors in the experimental set-up characterized by small angles * and 

Y‘ When 2>0, the director is subjected to a forced xeorientation force from the direction 
of the mechanical torsional moment which is equal , in the classical approximation /l, 2/, to 

r = y,, (o.H) [n,<H] . 

During the development of distortions the director has the following components: 

n, = Co% 18 (r> + p (2. tjl, 4% = sin @ (2) f r+ fz, t)], nz = U 

and we assume here that 

since we must take into account all types of possible motions corresponding to the boundary 
conditions, namely, rigid locking of the director orientation on the substrates in the r=O 
and Z= L planes, under the initial conditions n, 1 o = O,d%rdtl o = 0. 

After the instantaneous switching on of the magnetic field, the dynamic equation projected 
on the 0; axis has the form in which the left-band side of 13.1) is equal to TX and we have, 
with an accuracy to terms 0 (0: 

rr = %&N?N,?('J$ sn 2 (0 CG) - p (z. fjl f y CO8 216 (Zj - ci i:, 1Jl) . 

Restricting ourselves to considering shcrt time intervals foLIowing the instant of 
switching the magnetic field on, we can disregard, in the initial phase of motion of the 
director, the non-linear form of the momentum equation. In this case we obtain, after simple 
reduction, the following differential equation modelling the initia.l phase of the motions: 

where 

Substituting !3.2) into 13.3) we obtain 

w;?en the condition FE<~E holds, we can expect the appearanre 
inercase without limit 

(3.3) 

(3.41 

1 (3.5) 

of sclutions cf i3.4! which 

(3.6) 

since the exponential indices i.$ = r{AnT 
in the other case (i.,-<,:I), and 

?jJC2cj are positive in one case (&,*>O), and negative 
axe of no interest. 

The remaining components of the spectrum ((r,(r)) with numbers n>li do not yield solutions 
which increase, and will therefore not be considered. 
development of the processes, 

Xf we disregard the initial stage of 
which by modern estimates do not exceed several microseconds, 

we can justifiably replace the exact solution 13.61 by the following approximate relations: 

(3.i) 

Let the condition ;:<$ hold (as a result of a careful optical alignment of the system 
in the magnetic field /7/j. Then we can put .1'=0.\r~Fu in (3.51. fn this case an interesting 
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physical phenomenon may occur , namely the dynamic inversion of the spectrum of developing 
distortions, es compared with the quasistatic case. The dynamic spectrum (3.7) will contain 
components which increase with time without limit only with even numbers atnm(r), while ids,,,_,= 
0. Therefore when t>O, we have in (2.3) <sin 216 (z) A q (a, t)], = 0, but the quantity (CO: 2 10 (2) -,- 
o(.-.~))> will decrease monotonically. As a result, the rotation of the optical pattern on the 
screen will be replaced by a rapid increase in the distance separating the neighbouring 
hyperbolas, since the adjacent hyperbolas in a single square correspond to the condition of 
phase delay change by A@=2n. 

The limiting solution of the physical problem as t-so must be described by the normal 
spectral set of distortions (2.2) just as in the case of quasistatic rise in the magnetic 
field to the value pi,. i.e. when f>rl . Then we should observe on the screen a family of 
hyperbolas rotated by a large angle &(@,I. 
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